
CONTINUITY OF SOLUTIONS TO PARABOLIC EQUATIONS: NASH’S
PROOF AND FABES-STROOCK’S MODIFICATION

Nash’s Original Approach

Nash’s theorem pertains to operators with nonsmooth coefficients in divergence form:

Lt = ∂i(a
ij(x, t)∂j),

where only symmetry aij = aji and a uniform ellipticity condition on the coefficients are assumed:

λI ≤ (aij(x, t))ni,j=1 ≤ λ−1I

for all (x, t) ∈ Rn × [0,∞).

Theorem 1. (Nash [3]) Suppose u ∈ C∞(Rn × [0,∞)) ∩ L∞(Rn × [0,∞)) solves ∂tu = Ltu. Then
there exists C = C(n, α, λ) < ∞ such that for all (x1, t1), (x2, t2) ∈ Rn × (0,∞) with t1 < t2, we
have

|u(x1, t1)− u(x2, t2)| ≤ C||u||L∞(Rn×[0,∞))

(
|x1 − x2|α

t
α/2
1

+

(
t2 − t1
t1

) α
2(1+α)

)
.

Remark 2. The assumption that u is smooth is unnecessary, which and an approximation argument
shows that in fact the same result is true for any distributional solution. By an approximation
argument, this has the important consequence that distributional solutions of ∂tu = Ltu are Holder
continuous.

The starting point of Nash’s proof is obtaining an on-diagonal upper bound for the fundamental
solution

Γ : {(x, t; y, s) ∈ (Rn × [0,∞))2; t > s} → (0,∞)

of ∂tu = Ltu, which is defined for each (y, s) ∈ Rn× [0,∞) by letting Γ(·, ·; y, s) ∈ C∞(Rn× (s,∞))
be the unique solution of ∂tu = Ltu which is bounded on compact time intervals, and which satisfies
Γ(·, t; y, s) → δy in the sense of distributions as t ↘ s. The proof of the on-diagonal upper bound
uses an inequality conceived by Nash and proved by Elias Stein (in the Euclidean setting), which is
now called the Nash inequality:

||u||1+
2
n

L2(Rn) ≤ C(n)||∇u||L2(Rn)||u||
2
n

L1(Rn) ∀u ∈ S(Rn).

Applying this inequality to ut(x) := Γ(x, t; 0, 0), and using
∫
Rn utdx = 1 gives

d

dt
||ut||2L2(Rn) =2

∫
Rn
ut∂i(a

ij(x, t)∂jut)dx ≤ −2λ||∇ut||2L2(Rn) ≤ −2c(n)||ut||
2+ 4

n

L2(Rn),

which can be integrated to give ||ut||2L2(Rn) ≤ C(n, λ)t−
n
2 for all t > 0, from which the semigroup

property and similar estimates for the adjoint equation imply

Γ(x, t; y, s) ≤ C(n, λ)

(t− s)
n
2

.

This derivation of the on-diagonal upper bound from the Nash inequality works in extremely general
situations, and it is furthermore now known that Nash’s inequality is equivalent to an L2-Sobolev
inequality.
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Nash then considers two additional functionals defined using Γ: the moment

M(t) :=

∫
Rn

Γ(x, t; 0, 0)|x|dx,

and the entropy

Q(t) := −
∫
Rn

Γ(x, t; 0, 0) log Γ(x, t; 0, 0)dx.

In the Euclidean case aij ≡ δij , a direct computation givesM(t) =
√

2nt and Q(t) = n
2 log(4πt)+ n

2 .
Nash shows that these inequalities holds in great generality:

Q(t) ≥ n

2
log(4πt)− C(n, λ),

C(n, λ)−1
√
t ≤M(t) ≤ C(n, λ)

√
t,

where the lower bounds for Q,M are both elementary consequences of the on-diagonal heat kernel
upper bound, while the upper bound for M requires proving an estimate of the form

Q′(t) ≥ c(n, λ)M ′(t)2.

Next, Nash proves a a weighted lower bound for the logarithm of the normaized fundamental
solution:

G(t) :=

∫
Rn
e−|ξ|

2
log(t

n
2 Γ(t

1
2x, t; 0, 0) + δ)dx ≥ −C(n, λ)

√
− log δ,

which he terms ’The G Bound’. The proof relies on a somewhat arduous but elementary computa-
tion, which at some point uses in a crucial way the on-diagonal heat kernel upper bound, and the
upper and lower bounds for M(t), to show that

G′(t) ≥ c(n, λ)G(t)2 + C(n, λ) log δ

when G(t) is sufficiently negative, from which the G Bound easily follows. An elementary (but not
obvious) consequence of the G Bound is that

A(t) :=
1

2

∫
Rn
|Γ(x, t;x1, 0)− Γ(x, t;x2, 0)|dy ≤ ψ

(
|x1 − x2|√

t

)
for some positive increasing function ψ : (0,∞)→ (0, 1). In other words, any fundamental solutions
based at nearby points overlap at least some controlled amount.

To show spatial continuity, Nash uses an inductive scheme based on the above inequality for A(t),
simultaneously estimating A(t) and the moments

Ma(t) :=

∫
Rn
|x− x0|Ta(x, t)dx, Mb(t) :=

∫
Rn
|x− x0|Tb(x, t)dx,

where x0 := x1+x2
2 and

Ta(x, t) := (Γ(x, t;x1, 0)− Γ(x, t;x2, 0))+ ,

Tb(x, t) := (Γ(x, t;x2, 0)− Γ(x, t;x1, 0))+ .

Here, Ta can roughly be thought of as the fundamental solution based at (x1, 0), with a chunk of
the solution near x2 subtracted off. Nash fixes σ := 1 − (1 − ψ(1))/4, and lets tk be the first time
t > 0 where the (nonincreasing) quantity A satisfies A(tk) = σk. It follows from the estimate for
A(t) and the semigroup property that

(0.1) A(t) ≤
∫
Rn

∫
Rn
ψ

(
|x− y|√
t− s

)
χ(x, y, s)dxdy,

where χ is a density function on Rn × Rn which is mostly concentrated near (x1, x2):
A(t)

2
≤
∫
B(x1,2Ma(t)/A(t))

∫
B(x2,2Mb(t)/A(t))

χ(x, y, s)dydx ≤
∫
Rn

∫
Rn
χ(x, y, s)dydx ≤ A(t) ≤ 1.
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If we know supp(χ(·, ·, s)) ⊆ B

(
(x1, x2),

τ
1
2 |x1−x2|√

s

)
, we could estimate A(t + τ) ≤ ψ(2)A(t), and

so easily estimate tk inductively. χ(·, ·, t) will never be compactly supported, however, so we need
to estimate the “nearby part” of the right hand side of (0.1) using the fact that then ψ < 1− ε there,
and then estimate the “far-away part” in terms of the moment bound Mk := {Ma(tk),Mb(tk)}:

A(t′) ≤ σk
(

3

4
+

1

4
ψ

(
4Mk

σk
√
t′ − tk

))
,

which implies tk+1 ≤ tk + 16σ−2kM2
k . Although we have a rough estimate for the moments of the

form Mk(t) ≤ C(n, λ)
√
t, we need an upper bound that approaches zero as |x1 − x2| → 0. To find

such a bound, we can use that Ta satisfies ∂tTa ≤ LtTa in the weak sense along with the moment
estimate to get

Ma(t
′) ≤Ma(t) + C(n, λ)A(t)

√
t′ − t.

Because Ma(0) = |x1 − x0| = |x1−x2|
2 , we get the following by induction:

Mk+1 ≤Mk + C(n, λ)σk · 4σ−kMk ≤ · · · ≤ C(n, λ)k|x1 − x2|,

so combining estimates and using t0 = 0, we have tk+1 ≤ Bk|x1 − x2|2, where B = B(n, λ) < ∞.
This easily implies

A(t) ≤ C(n, λ, α)

(
|x1 − x2|√

t

)α
,

where α := −2(logB)−1 log σ ∈ (0, 1), which in turn implies Theorem 1 when t1 = t2, using the
semigroup property. For the estimate in time, we note that any solution ∂tu = Ltu satisfies

|u(x, t)− u(x, s)| ≤
∫
B(x,ρ)

|u(y, s)− u(x, s)| · Γ(x, t; y, s)dy + 2||u||L∞(Rn)

∫
Rn\B(x,ρ)

Γ(x, t; y, s)dy

by the semigroup property, where ρ > 0 is to be determined. The first integral can be estimated
using the spatial Holder estimate for u, while the second integral can be estimated using the moment
bound for Γ. Combining estimates and optimizing ρ then gives Theorem 1.

Gaussian Bounds on the Fundamental Solution

The strategy of Fabes-Stroock [2] is to derive Theorem (1) as a consequence of the following
two-sided Gaussian bounds for the fundamental solution, originally proved by Aronson.

Theorem 3. (Aronson [1]) There exists C = C(n, λ) < ∞ such that for all (x1, t1), (x2, t2) ∈
Rn × [0,∞) with t1 < t2, we have

1

C(t2 − t1)
n
2

exp

(
−C|x1 − x2|

2

t2 − t1

)
≤ Γ(x2, t2;x1, t1) ≤

C

(t2 − t1)
n
2

exp

(
− |x1 − x2|

2

C(t2 − t1)

)
.

The proof of Theorem 3 in [1] relies on the parabolic Harnack inequality, but Fabes-Stroock are
able to give an independent proof of this fact, and in fact use this to prove the parabolic Harnack
inequality. The proof of the on-diagonal upper bound is similar to Nash’s, where d

dt ||u||Lp(Rn) is
estimated using Nash’s inequality for a positive solution of ∂tu = Ltu, generalizing Nash’s estimate
for the L2 norm. Moreover, we actually estimate the kernel corresponding to the “twisted” operators
Lψt := e−ψ ◦Lt ◦ eψ, where ψ(x) := 〈α, x〉 for a fixed direction α ∈ Rn, which gives the slightly more
complicated evolution estimate

d

dt
||ut||L2p(Rn) ≤ −

c(n, λ)

2p
||ut||

1+ 4p
n

L2p(Rn)||ut||
− 4p
n

Lp(Rn) +
|α|2p
λ
||ut||L2p(Rn)
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for positive solutions of ∂tu = Lψt u. Then an entirely elementary ODE comparison argument lets
us estimate L2k+1-norms of u in terms of L2k -norms. Iterating these estimate leads to

sup
Rn

ut ≤ C(n, λ)t−
n
4 e2λ

−1|α|2t||u0||L2(Rn).

By duality, we can easily obtain

||ut||L2(Rn) ≤ C(n, λ)t−
n
4 e2λ

−1|α|2t||u0||L2(Rn).

Combining estimates using the semigroup property, we get the following on-diagonal upper bound
for the fundamental solution Γψ of the twisted operator:

Γψ(x, t; y, s) ≤ C(n, λ)

t
n
2

e4λ
−1|α|2t.

Now we observe that the on-diagonal upper bounds for the twisted operators imply a Gaussian
upper bound for the original operator, by noting the following relation:

Γψ(x, t; y, 0) = e−〈x−y,α〉Γ(x, t; y, 0),

and then taking α := λ
8ty − x.

For the lower bound, we consider a quantity similar to that estimated by Nash:

G :=

∫
Rn
e−|y|

2
log Γ(x, 1; y, 0)dy,

which is Nash’s quantity G(1), but with the δ in the term log(Γ(x, 1; y, 0) + δ) removed and the
integral is over the initial time slice. In fact, Fabes-Stroock show that G ≥ −C(n, λ) for all
x ∈ B(0, 1), whereas the lower bound Nash proved for G degenerates as δ ↘ 0. Moreover, the
proof of this G-estimate is considerably simpler than Nash’s, without any deep new ideas. Once
this bound is established, we get a near-diagonal lower bound for Γ using the semigroup property
and Jensen’s inequality:

log Γ(x, 2; y, 0) ≥ log

(∫
Rn

Γ(x, 2; z, 1)Γ(z, 1; y, 0)e−π|z|
2
dz

)
≥
∫
Rn

(log Γ(x, 2; z, 1) + log Γ(z, 1; y, 0)) e−π|z|
2
dz ≥ −2C(n, λ)

whenever x, y ∈ B(0, 1). By parabolic rescaling, and iterating this inequality (again using the
semigroup property), we get the desired Gaussian lower bound.

Holder Continuity via Gaussian Bounds

To give a proof of Theorem 1 using Theorem 3, we first prove a lower bound for the fundamental
solution Γ̂(x, t; y, s) with Dirichlet boundary conditions on B(0, 1). The strong Markov property for
Γ gives the formula

Γ̂(x, t; y, 0) = Γ(x, t; y, 0)−
∫
∂B(0,1)×[0,t)

Γ(x, t; ξ, τ)dµ0,y(ξ, τ)

for x, y ∈ B(0, 1), where µ0,y is a positive measure with total mass ≤ 1. Now use the near-diagonal
lower bound to estimate Γ(x, t; y, 0) from below, then the Gaussian upper bound to estimate the
integral, obtaining

Γ̂(x, t; y, 0) ≥ c(n, λ, δ, γ)

for all x, y ∈ B(0, δ), s ≥ 0, and t ∈ (s + γ, s + 1). By a standard iteration procedure, Theorem 1
will follow from proving the oscillation estimate for some α = α(λ, n) ∈ (0, 1):

oscB(x, 1
2
)×[ 3

4
,1]u ≤ αoscB(x,1)×[0,1]u
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for all solutions u ∈ C∞(Rn × [0, 1[) of ∂tu = Ltu. Set M(r) := supB(x,r)×[1−r2,1] u, m(r) :=
infB(x,r)×[1−r2,1]. By replacing u with −u, we can assume

S := {x ∈ B(0, 1);u(x, 0) ≥ 1

2
(M(1) +m(1))}

satisfies |S| ≥ ωn
2 . Then, for all (x, t) ∈ B(0, 12)× [34 , 1],

u(x, t)−m(1) ≥
∫
B(x,1)

(u(y, 0)−m(1)) Γ̂(x, t; y, 0)dy ≥ 1

2
(M(1)−m(1))

∫
S

Γ̂(x, t; y, 0)dy

≥c(n, λ)(M(1)−m(1)).

Taking the infimum over (x, t) and rearranging gives the claim.
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